There are two properties we can use to rewrite radical expressions.

A. The square root of a product equals the product of the square roots of its factors.

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 Product Property of Radicals

B. The square root of a quotient equals the quotient of the square roots of its numerator and denominator.

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 Quotient Property of Radicals

These properties can be used to write radical expressions in *simplest radical form*. An expression with radicals is in *simplest radical form* if the following are true.

1. No radicands (expressions under radical signs) have perfect square factors other than 1.

$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}$$

2. No radicands contain fractions.

$$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$$

3. No radicals appear in the denominator of a fraction.

$$\frac{5}{\sqrt{6}} = \frac{5}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{5\sqrt{6}}{\sqrt{36}} = \frac{5\sqrt{6}}{6}$$

Simplify each radical expression. Show all steps and circle your answer.

1.
$$\sqrt{75}$$

$$\sqrt{25}\sqrt{3}$$

$$\sqrt{5}\sqrt{3}$$

$$\begin{array}{ccc}
\sqrt{27} \\
\sqrt{9} \sqrt{3} \\
\sqrt{3} \sqrt{3}
\end{array}$$

3.
$$\sqrt{180}$$
 $\sqrt{36}\sqrt{5}$
 $\sqrt{6}\sqrt{5}$

4.
$$-\sqrt{200}$$

- $\sqrt{100}$ Ja

$$5. \quad \sqrt{\frac{49}{121}}$$

$$\begin{array}{c}
12 \\
\sqrt{81} \\
\sqrt{81} \\
\sqrt{81} \\
\sqrt{4} \\
\sqrt{3} \\
9 \\
2 \\
\sqrt{3} \\
9
\end{array}$$

7.
$$\frac{3}{\sqrt{12}}$$
 $\frac{3}{\sqrt{13}}$
 $\frac{3}{\sqrt{13}}$
 $\frac{3}{\sqrt{13}}$
 $\frac{3}{\sqrt{13}}$

8.
$$\frac{8}{\sqrt{18}}$$
8. $\frac{8}{\sqrt{19}\sqrt{2}}$
8. $\frac{1}{\sqrt{2}}$
9. $\frac{1}{\sqrt{2}}$
9. $\frac{1}{\sqrt$

10.
$$\sqrt{\frac{3}{5}}$$
 $\sqrt{\frac{3}{5}}$
 $\sqrt{\frac{5}{5}}$
 $\sqrt{\frac{5}{5}}$

Perform the indicated operations. Write your answers in SRF.

11.
$$\frac{1}{3}\sqrt{63}$$

$$\sqrt{9}\sqrt{7}$$

$$\frac{3\sqrt{7}}{3}$$

$$\sqrt{7}$$

$$\sqrt{7}$$

12.
$$3\sqrt{\frac{5}{6}}$$
 $3\sqrt{5}$
 $\sqrt{6}$
 $\sqrt{$

13.
$$\sqrt{10} \cdot \sqrt{20}$$

$$\sqrt{10} \sqrt{2}$$

$$\sqrt{10} \sqrt{2}$$

14.
$$\sqrt{2} \cdot \sqrt{3} \cdot \sqrt{6}$$

$$\sqrt{36}$$

15.
$$(7\sqrt{3})^2$$
49(3)

16.
$$\left(\frac{2}{3}\sqrt{3}\right)^2$$

$$\frac{4}{9}(3)$$

17.
$$\frac{2\sqrt{5}}{\sqrt{4}}$$

$$\frac{2\sqrt{5}}{\sqrt{5}}$$

$$\sqrt{5}$$

20.
$$\frac{-4 \pm \sqrt{32}}{2}$$

$$-4 \pm \sqrt{16} \sqrt{2}$$

$$-4 \pm 4 \sqrt{2}$$

$$-2 \pm 2 \sqrt{2}$$

21.
$$\frac{-15 \pm \sqrt{50}}{10}$$

$$\frac{-15 \pm \sqrt{25}\sqrt{2}}{10}$$

$$\frac{-15 \pm 5\sqrt{2}}{10}$$

$$\frac{-3 \pm \sqrt{2}}{2}$$

22.
$$\frac{-2\pm\sqrt{(2)^2-4(6)(-1)}}{8}$$

$$-2\pm\sqrt{4+24}$$

$$8$$

$$-2\pm\sqrt{28}$$

$$8$$

$$-2\pm\sqrt{4}$$

$$8$$

$$-2\pm\sqrt{27}$$

$$8$$

$$-2\pm2\sqrt{7}$$

$$8$$

$$-1\pm\sqrt{7}$$

$$8$$